Cyber Hate Speech on Twitter: An Application of Machine Classification and Statistical Modeling for Policy and Decision Making

نویسندگان

  • Pete Burnap
  • Matthew L. Williams
چکیده

The use of “Big Data” in policy and decision making is a current topic of debate. The 2013 murder of Drummer Lee Rigby in Woolwich, London, UK led to an extensive public reaction on social media, providing the opportunity to study the spread of online hate speech (cyber hate) on Twitter. Human annotated Twitter data was collected in the immediate aftermath of Rigby’s murder to train and test a supervised machine learning text classifier that distinguishes between hateful and/or antagonistic responses with a focus on race, ethnicity, or religion; and more general responses. Classification features were derived from the content of each tweet, including grammatical dependencies between words to recognize “othering” phrases, incitement to respond with antagonistic action, and claims of well-founded or justified discrimination against social groups. The results of the classifier were optimal using a combination of probabilistic, rule-based, and spatial-based classifiers with a voted ensemble meta-classifier. We demonstrate how the results of the classifier can be robustly utilized in a statistical model used to forecast the likely spread of cyber hate in a sample of Twitter data. The applications to policy and decision making are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High-Performance Model based on Ensembles for Twitter Sentiment Classification

Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...

متن کامل

An Iterative Decision Rule to minimize cost of Acceptance Sampling Plan in Machine Replacement Problem

In this paper, we presented an optimal iterative decision rule for minimizing total cost in designing a sampling plan for machine replacement problem using the approach of dynamic programming and Bayesian inferences. Cost of replacing the machine and cost of defectives produced by machine has been considered in model. Concept of control threshold policy has been applied for decision making. If ...

متن کامل

Locate the Hate: Detecting Tweets against Blacks

Although the social medium Twitter grants users freedom of speech, its instantaneous nature and retweeting features also amplify hate speech. Because Twitter has a sizeable black constituency, racist tweets against blacks are especially detrimental in the Twitter community, though this effect may not be obvious against a backdrop of half a billion tweets a day. We apply a supervised machine lea...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data

Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015